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Energy Transfer in Isotropic 
Turbulence at Low Reynolds Numbers 

B y  J. A. Domarad~ki', and R. S. Rogallo* 

Detailed measurements were made of energy transfer among the scales of motion 
in incompressible turbulent fields at low Reynolds numbers generated by direct 
numerical simulation. It was observed that although the transfer resulted from 
triad interactions that were non-local in k space, the energy always transferred 
locally. The results are consistent with the notion of non-uniform advection of 
small weak eddies by larger and stronger ones, similar to transfer processes in the 
far dissipation range at high Reynolds numbers. 

1. Introduction 
Our goal was to analyze velocity fields generated by direct numerical simulations 

of homogeneous, isotropic turbulence to better understand how energy is transferred 
among different scales of motion in such flows. At the present time there is some 
controversy concerning the importance of local versus nonlocal energy transfer pro- 
cesses. A number of theoretical works (Deissler 1978, Kraichnan 1971, 1976, and 
Dannevik 1987) and one experimental work (Lii et. al. 1976) predict relatively large 
energy transfer between eddies of disparate sizes (nonlocal energy transfer). On the 
other hand the classical argument of Kolmogoroff stresses a local energy cascade 
as a leading cause of the universal subrange. The numerical work of Domaradzki 
et al. (1987), Domaradzki (1988), Brasseur and Corrsin (1987), and Kerr (1988) 
indicates that at low Reynolds number very little energy is transfered between dis- 
tant wavenumbers; the energy transfer occurs between similar wavenumbers. The 
resolution of these contradictions is needed since essentially all turbulence theories 
and models rely on assumptions about the energy transfer and those assumptions 
are tested only indirectly by comparing predictions of the models with available 
experimental data. 

2. The computed velocity fields 
We have used velocity fields generated by numerical simulations initialized with 

three different energy spectra. All simulations were run for sufficiently long times 
to establish nonlinear interactions and the energy spectra decreased by at least 
three orders of magnitude between the energy peak and the maximum resolved 
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FIGURE 1. Three-dimensional energy spectra, normalized by total energy and 
Taylor microscale. - data of Ling & Huang (1970), o o A + simulation I128D2 
at several times. 

wavenumber. The transfer spectra are well resolved and approach zero at the largest 
wavenumber. More detailed information about these fields is given in Table I. 

The computed case 1128D2D attempts to match the experimental results of Ling 
and Huang (1970) who found turbulence decay between microscale Reynolds num- 
bers 30 and 3 to be self-similar. At this low Reynolds number the energy and 
dissipation ranges coincide, and there is only a single length scale. Use of the Tay- 
lor microscale collapses the results of the numerical simulations at different times 
(see figure 1) as it does the experimental data, and for this reason we consider the 
simulated velocity fields to be a fair model of laboratory, isotropic turbulence at 
low Reynolds numbers. 

The case HIE24 was obtained from simulations of Lee and Reynolds (1985) 
that were initialized with an energy spectrum decreasing as e z p ( - a k 2 )  for large 
wavenumbers IC. Such spectra are commonly used as initial conditions in direct 
numerical simulations of turbulence even though they decrease much faster than 
experimental spectra which behave as e t p ( - a k )  for large wavenumbers. 

The case F64DR is a result of simulations of turbulence forced in a manner 
suggested by Yakhot and Orszag (1986). Such forcing is used in the Renormalization 
Group (RNG) theory to generate a velocity field with a Kolmogoroff spectrum 
that is stationary in time. Forcing of this type was used recently in simulations by 
Yakhot et al. (1988) to test numerically some predictions of the RNG theory. We 
were unable to obtain a significant inertial subrange in our forced simulations, the 
spectrum had a IC-' range at low wavenumber and decayed exponentially at higher 
wavenumbers. Nevertheless this velocity field is an important example of simulated 
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Table 1. Summary of computed cases 
Case N kmaz kpeak v Rx S 
1128D2D 128’ 60.34 5 0.065 13.6 -0.44 
HIE24 128’ 60.34 2 0.01377 20.4 -0.48 
F64DR 64’ 30.16 1 0.1 46.0 -0.45 
N = computational grid size 
kma, = maximum resolved wavenumber 
kpak = location of maximum of energy spectrum 
U = molecular kinematic viscosity 
RA = Reynolds number based on vvm, and Taylor microscale 
S = velocity derivative skewness 

turbulence that contains a range of wavenumbers k in which the energy spectrum 
decays algebraically. Such dependence is characteristic of high Reynolds number 
turbulence. 

3. Basic measured quantities 
The quantity of principal interest here is the energy exchange between a given 

mode k and all pairs of modes p and q = k - p that form a triangle with k as one of 
the legs and where p and q lie in some prescribed regions, P and Q respectively of 
the spectral space. For isotropic fields it is natural to choose P and Q as spherical 
shells k - i A k  < lkl < k + i A k  in the wave space with a shell thickness A k .  In 
addition to the velocity field un(k) given on the entire Fourier mesh we define a 
truncated velocity field 

un(k), if k E P or k E 8; 
otherwise. uLpQ)(k) = 

The transfer for the truncated field is then 

where 
Pnew(k) = L ( & e  - knke/k3) + ke(&tw - knkw/k2) ,  (3) 

the asterisk denotes complex conjugate, and the summation convention is assumed. 
We take regions P and Q to be spherical shells of radius p and q, and average over 
a spherical shell of radius k giving 

Here < . . . > denotes the spherical averaging over k. Note that T ( k l p , q )  is the 
transfer into band k resulting from all triads having one leg in p, one in q, and one 
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FIGURE 2. 
transferred by all triads having at least one leg in 23 < p < 25 is shown. 

Energy transfer contributed by a single band. The total energy 

in E .  If the wave space is divided into distinct shells and T(IClp,q) is summed over 

I 9 

The function P(E(p)  calculated by Domaradzki (1988) by a different method was 
used to validate the calculations in this work. Finally, summing P(IC1p) over all 
shells p gives the total energy transfer to wavenumber E 

P 

Functions T( IC), P(ICIp), and T(Elp, q)  give progressively more detailed information 
about the energy transfer between different scales of motion. 

4. Analysis of the function P(IC1p) 
Deissler (1978) estimated the energy transfer function P(Elp) from the experi- 

mental data of Ling and Huang (1970) and concluded that their experimental data 
supports the notion of nonlocal energy transfer. Specifically, the calculated function 
P(Elp) indicated that a wavenumber band E loses most of its energy to a band at 
wavenumber p that is about an order of magnitude greater than E .  

In view of our results we believe that Deissler’s analysis is in error. As Deissler 
points out, it is not possible to solve ( 5 )  uniquely for P(Elp) because any function 
having zero sum may be added to the solution. Our measured function P(kIp) ,  
for the same conditions as in figure 2a of Deissler, is shown in our figure 2 with 

I 
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wavenumber band p indicated by the two dotted vertical lines. The peaks in the 
transfer are close to this band 23 < p < 25 indicating that the energy is transferred 
among wavenumbers k that are comparable to p, and moreover, energy is transfered 
from smaller to larger wavenumbers i.e. from larger to smaller scales of motion. In 
figure 2 the function P ( k ( p )  is negligible for k outside the interval i p  < k < 2p ,  and 
we conclude that most of the energy is transfered between modes with wavenumber 
ratios not exceeding two. 

The shape of the function P ( k J p )  for a k e d  p shown in figure 2 is typical for 
all values of p beyond the energy peak and for all velocity fields considered in our 
work. When the wavenumber band p is near the peak of the energy spectrum the 
function P ( k J p )  still has two peaks for k close to the band p but they are broader, 
and values of P(kIp) for k > 2p are significant. 

The function P(klp)  does not provide information about the third leg of the 
wavevector triad, two legs of which have lengths k and p respectively. That infor- 
mation is provided by the function T(klp,q) .  

5. Analysis of the function T(lclp,q) 
For the velocity field 1128D2D we have divided Fourier space into 13 spherical 

shells of thickness Ak = 5. In figure 3a we show the decomposition of the function 
P(lclp) into functions T(lclp,q) for p k e d  in the wavenumber band 35 < p < 40. 
The solid line represents P ( k ( p )  and the lines with symbols represent the individual 
contributions T(&lp, q )  of wavenumber bands q to the sum (4). Even though there is 
a total of thirteen bands q in the sum (4), only three or four contribute significantly. 
Those with the largest contributions are wavenumbers q < 15. 

The total transfer P(lclp) is mostly local since the peaks in the curve P(kIp)  are in 
the vicinity of the prescribed band p. Therefore, as explained in the previous section, 
the energy is transfered between two wavenumbers h of comparable magnitude to p, 
in this case 30 < IC < 45 and 35 < p < 40. However, the decomposition (4) indicates 
that of all the triangles satisfying this condition only triangles with a significantly 
smaller third leg q < 15 contribute to the transfer. Similar behaviour was observed 
for other velocity fields considered in this work. The transfer curves for case HIE24 
shown in figure 3b and for case F64DR shown in figure 4 exhibit the same qualitative 
behaviour as those in figure 3a. In all cases the transferring triads had a leg near 
the peak of the energy spectrum. 

We conclude from this analysis that at low Reynolds numbers the local energy 
transfer between similar wavenumbers located beyond the energy containing range 
is due to nonlocal wavevector triads that have one leg much shorter than the other 
two. 

It is interesting to note in the figures 3 and 4 that the effect of such nonlocal 
interactions on the smallest leg of the triad (large scale) is a small increase in its 
energy as represented by the positive values for k < 15 (figure 3), and for k < 7 
(figure 4). This means that small (and less energetic) scales of motion transfer a 
small amount of energy to large (and more energetic) scales. This is a surprising 
result since the generally accepted models of energy transfer in turbulence assume 
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FIGURE 3. Detailed triad contributions to energy transfer: (a) case 1128D2D, (b) 
case HIE24. The transfer spectra T(k lp ,q )  are shown for band 35 < p < 40, and 
all bands q that make a significant contribution to P(k1p). A ........ 0 < q < 5, 
x . . . . . . . . 5 < q < 1 0 , 0 - - -  10 < q < 15, ---- 15 < q < 20, x-0- 20 < q < 25, 

25 < q < 30, X---- 30 < q < 35, - P(k1p). 

that energy is transferred from large to small scales by nonlocal interactions i.e. one 
small wavenumber transfering large amounts of energy to two large wavenumbers, 
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FIGURE 4. Detailed triad contributions to energy transfer for case F64DR. The 
transfer spectra T(k lp ,q )  are shown for band 16 < p < 20, and all bands q that 
make a significant contribution to P(k1p).  

8 < q < 12, - P ( k , p ) .  
x---- 0 < q < 4, o ........ 4 < q < 8, 

A -.- 

and that eddy viscosity concepts provide an appropriate model. 

8. Linear theory 

The behavior, at high Reynolds numbers, of the turbulent energy spectrum in the 
far dissipation range, and the scalar spectrum in the viscous-convection range at 
high Prandtl number, have been predicted using assumptions about the structure 
of the velocity field at scales smaller than the Kolmogorov length. See Monin & 
Yaglom (1975), and the works cited there. The velocity field is assumed to contain 
small material regions, intermittent in space, in which the strain rate is high and 
spatially uniform. In addition to the assumption of disparate space scales, the time 
scales must also be assumed disparate to linearize the equation for vorticity. With 
these assumptions, the problem becomes a simple convection and decay problem 
in wave space with a spatially linear velocity field, and the general solution can be 
written explicitly (Saffman 1963). The interaction between scales is explicitly non- 
local with the larger scales, given by the Kolmogorov length, straining the smaller 
scales of the far dissipation range. Batchelor (1958) assumes the strain rates are 
constant in time, but Kraichnan (1968) points out that a rapidly varying strain rate 
would alter the solution significantly at high wavenumber. 

We propose a similar situation at low Reynolds number, where the straining scales 
are again the dissipation scales, but now the energy and dissipation ranges are one 
and the same. It still seems reasonable to consider the interaction of disparate length 
and time scales and to linearize the vorticity equation, and we are led to the same 
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convection-decay equation in wave space encountered by Batchelor and Kraichnan 
at high Reynolds numbers. However, we can no longer assume that dissipation 
(straining) occurs in distinct material regions, intermittent in space and constant in 
time, and we must account for the energy decay and the increasing length and time 
scales of the straining scales. Therefore it seems natural to consider the unsteady 
initial-value problem of Kraichnan rather than the steady boundary-value problem 
of Batchelor. Kraichnan's approach leads to an energy spectrum with a ezp(-a&) 
form at high wavenumber that is closer to the experimental measurements of Ling 
& Huang (1970) than is the e t p ( - a k 2 )  form predicted by Batchelor. 

7. Conclusions 
The major conclusion from this work is that the energy transfer in low Reynolds 

number turbulence is due to triad interactions that involve one short and two long 
legs of comparable lengths. 

The energy is transfered mainly between the pair of large wavenumbers i.e. be- 
tween comparable small scales, with one small eddy losing energy to a somewhat 
smaller one. In that sense the energy transfer is predominantly local since the ed- 
dies exchanging energy are of similar size. However, the triads responsible for such 
transfer are nonlocal since in addition to two small scales, one large scale of motion 
(small wavenumber) is involved. 

Interactions of this type seem to be inconsistent with the older as well as mod- 
ern (RNG) concepts of eddy viscosity that postulate nonlocal interactions moving 
energy from one large scale to two small ones. In that context it is important to 
distinguish between local (nonlocal) energy transfer and local (nonlocal) triad in- 
teractions. Energy transfer is often implicitly assumed to involve only two scales of 
motion: if they are similar,the transfer is local, if they are disparate the transfer is 
nonlocal. Triad interactions are local if all three legs of the triad are of comparable 
lengths and nonlocal if one of the legs is much shorter than the other two. With 
this distinction the eddy viscosity notion is based on the assumption that both the 
energy transfer and the triad interactions are nonlocal. The results of our work 
point toward local energy transfer that is caused by nonlocal triad interactions. 

It seems possible that this transfer process can be described by a linear theory 
similiar to that of the far dissipation range at high Reynolds numbers, but first it is 
necessary to inquire in more detail about the space-time structure of the dissipation 
scales. 
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